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arc positive for the MuSC marker Pax? (Fig. 4, A 
and B, and fig. S II ). In con...,., only 6% of doublets 
in plastic microwells have this gene expression 
panern, suggesting that a pliant substrate enables 
MuSC expansion. Allhough gene expression data 
are suggestive, an in vivo functional assay is nee­
essary to conclude definitively that a self-renewal 
division event occurred in culture. 

We show conclusively that stem cell self­
renewal occurs using an in vivo functional assay. 
The transplantation ofMuSCs at a population level 
demonstnnes engmftment (Figs. 2 and 3) but docs 
not defin itively show that self-renewal divisions 
occurred in culture, because the population could 
include nondividing cells that maintained stem 
cell properties. Accordingly, in this experiment, we 
plated MuSCs in hydrogel microwell arrnys and 
obtained images immediately after plating and 2 
to 3 days after culturing to identify microwells 
thaI contained only one doublet. Doublets from 
5 microwells were picked and pooled using a 
micromanipulator, and 10 cells total were trans­
planted per mouse (Fig. 4A). A detectable BLI 
signal indicates engraftment resulting from a se lf­
renewal division evcnt that must have occurred in 
at least one of the fi ve transplanted doublets. 
Notably, 25% (3 of 12) of mice transplanted with 
doublets culUlred on soft substrates demonstrate 
detectable engraftment (Fig. 4C) and contribution 
to regenemting myofibers (Fig. 40, top), pro­
viding in vivo functional evidence that MuSe 
self-renewal division events occur in culture on 
pl iant substrnlCS. In contrast, doublets grown on 
rigid plastic microwells never exhibit engrafbnent 
after transplantation (0 of 14) (Fig. 4C), indicnting 
that their regcnemtive potential is rapidly lost. 

MuSe self-renewal on pliant hydrogel occurs 
even after multiple divisions. We transplanted 
elones that arosc from a single cell that undcr­
went 3 to 5 divisions. Remarkably, 12% (I of 8) 
of micc transplanted with a single clone show en­
grafuncnt, demonstrating that MuSe self-renC\'laJ 
capacity is retained on pliant substrates even after 
multiple divisions (Fig. 4, C and 0 , bottom). 

I-I ere, we provide insight into the potency of 
tissue rigidity, a biophysical property of the skel­
eta l muscle micfOC11vironment, on stcm cell fate 
regulation. Using a single-cell tracking algorithm 
to intcrrogate MuSe behaviors at the single-ccll 
level, we demonstrate that soft substrates enhance 
MuSC survival, prevent differentiation, and pro­
mote stemncss. Functional assays in mice dcm­
onstmte conclusively that pliant substrates permit 
MuSe self-renewal in culrure. Although the un­
derlying mechanisms remain to be elucidated, 
we hypothesize that decreased rigidi [)' preserves 
sternness by altering cell shape, resulting in cyto­
skeletal rearmngements and altered signaling, as 
shown forceillincs (16). Despite the remarkable 
retention of sternness in response to a single pa­
rameter, rigidity, we anticipate further enhancement 
of sternness through incorporation of additional 
biochemical cues into our reductionist platform. 
Smdies employing biomimctic culture platforms, 
such as described here for MuSCs, wi ll broadly 

afteet stcm cell srudics by facil itating in vitro prop­
agation whi le maintaining sternness and the ca­
pacity to rcgenemtc tissues, a critical step toward 
the development of cell-based therapies. As an 
alternative to cmbryonic stem cells and iPS cells 
that must be directed toward a differentiated fate , 
our approach exploits the existence of native 
stem cells wi thin tissucs that havc a well -defi ned 
tissuc-speci flc identity, 
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Optimally Interacting Minds 
Bahador Bahrami, l,2,1. Karsten Olsen,l Peter E, Latham,-4 Andreas Roepstorff,3 
Geraint Rees,l ,2 Chris 0, Frith2,l 

In everyday life, many people believe that two heads are better than one, Our ability to solve 
problems together appears to be fundamental to the current dominance and future survival of the 
human species, But are two heads really better than one? We addressed this qu estion in the context 
of a collective low-level perceptual decision-making task. For two observers of nearly equal 
visual sensitivity, two heads were definitely better than one, provided they were given the 
opportunity to communicate freely, even in the absence of any feedback about decision outcomes. 
But for observers with very different visua l sensitivities, two heads were actually worse than the 
better one. These seemingly discrepant patterns of group behavior can be expla ined by a model 
in wh ich two heads are Bayes optimal under the assumption that individuals accurately 
communicate their level of confidence on every trial. 

T
o comc to an optimal joint decision, in­
dividuals must share infom13tion with each 
other and, import.'U1t1y, weigh that infor­

mation by its reliability (I, 2). It has been well 
establ ished that isolated individuals can accurate­
ly weigh infonnation when combining different 
sources of sensory infomHition (3- 5). Little is 
known, however, about how, or even whether, two 

individuals can accumtely combine infonnation 
that they communicate with each other. To inves­
tigate this iSl."Ue, wc examined the behavior of pairs 
of individuals in a simple perccptual decision task, 
and we asked how signals from the same sen­
sory modality (vis ion) in the brains of two dif­
ferent ind ividuals could be combincd th rough 
social interaction. 
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Work on pcrt:eptual dccision..:rnaking has shown 
that when combining infonnation from different 
senses, individuals have access not just to mag­
nitudes of sensol)' signals, but also to their prob­
ability distributions. or at least to their means and 
variances (3-8). However, this may not be £rue 
for interpersonal communication. Wherens prob­
ability distributions arising from different sensory 
modalities arc available within an individual 's 
brain, il is not clear whether such distributions 
can be passed directly to another person or what 
types of infonnation can be communicated. To 
answer this, we considered four models (9), each 
of which proposes that different types of infor­
mation could be communicated. and quantita­
tively compared the predictions of those models 
10 empirical data in a low-level visual decision­
making task. 

The first model proposes that nothing except 
the decision about the visual stimulus is com· 
municated, and when there is disagreement, the 
joint decision is no bener than a coin flip (CF 
model). This strategy is expected from previous 
work on collective decision-making without feed· 
back (/O).1l1e second model proposes that nothing 
exeept the decision is communicated, but that pairs 
of individuals learn, from nial·to-nial feedback, 
which of them is more accurate, so they evcnrually 
use that individual's decisions [the behavior and 
feedback (BF) model]. This model was motivated 
by previous work showing that collective decisions 
arc dominated by the most competent group mem· 
her in situntions where clear feedback about '"the 
truth" (in our case, the oorrect answer) is available 
(//. /2). The third model, put forward here for the 
first time, proposes that confidence. which we dc<­
fine as an internal estimate of the probability of 
being correct ( /3), is communicated [the weighted 
confidence sharing (WCS) model] (9). Finally. the 
founh model proposes that the mean and standard 
deviation of the sensory response to the stimulus 
about which the decision is made arc communi· 
cared [direct signal sharing (DSS) model]. This 
model is used to account for multisensory ime· 
gratiol1 with in an individual (3, 4) and also for 
collective decisions in groups (/4). To anticipate 
our findings, we detennined dtat the WCS model 
was quanrit.1tively consistent with our empirical 
data, whereas the other three models were not. 

Our empirical dam were obtained from pairs 
of panicipants (dyads) who viewed brief visual 
displays containing n faint target (contrast oddball; 
Fig. IA) in either the first or second viewing in· 
terval (9). We pcrfonned a series of four expcr· 
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iments, each of which followed very similar 
procedures. Initially. each panicipant chose the 
interval that they thought contained the target, 
without consulting the other. Individual decisions 
were then shared. and if participants disagreed, 
they discussed the matter until they reached a joint 
decision. Subsequently, both participants were in· 
fomlcd of the correct choice (with the cxception 

ofcxpcriment 4 in wh ich no feedback was given). 
Individual and dyad psychometric functions (Fig. 
I B, lcft and middle panels) were fit with a cumu· 
lative Gaussian function, from which we extracted 
the slopes. The slope provided an estimate of sen· 
sitivity (the stccpcr the slope, the higher the scnsi· 
tivity). More sensitive observers were, by definition, 
more re liable in their estimates of COntrast. 
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Fig. 1. (A) Experimental paradigm. Each trial consisted of two observation intervals. In each interva~ 
six vertically oriented Gabor patches were displayed equidistantly around an imaginary circle (duration: 
85 ms), In either the first or second interval, there was one oddball target that had slig htly higher contrast 
than all of the others (in this example, upper-left target in interval 1), (B) Two example psychometric 
functions and the group average in experiment l. The proportion of trials in which the oddball was 
reported to be in the second interval is plotted against the contrast difference at the oddball location (i.e., 
contrast in the second interval minus contrast in the first). A highly sensitive observer would produce a 
steeply rising psychometriC function with a large slope. Blue circles, performance of the less sensitive 
observer Umin) of the dyad; red squares, performance of the more sensmve observer (sm •• ); and black 
diamonds, performance of the dyad (s-~. The blue and red dashed curves are the best fit to a cumu· 
lative Gaussian function (9); the solid black curve is the prediction of the WCS. N = lS dyads. (0 Predictions of 
the four models (see Eqs, 1 to 4). The x axis shows the ratio of individual sensitivities (s-rn'dsmaJ, with values 
near one corresponding to dyad members with similar sensitivities and values near zero to dyad members 
with very different sensitivities, The y axis shows the ratio of dyad sensitivity to the more sensitive member 
(s-dy,lJsrna.)' Values above the horizontal line indicate communication benefit; in this range the dyad is 
better than the more sensitive observer. The red curve, which corresponds to the WCS model is above the 
horizontal line only if smirlsllIiIIl is larger than -0.4, reflecting the prediction that communication by WCS is 
beneficial only if dyad members have approximately the same competence. The green curve, which 
corresponds to the 055 mode~ never crosses the black horizontal line, so for this model, communication 
will invariably be beneficial. The dot·dashed and solid black tines indicate the CF and SF models, 
respectively. 
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The four models made different predictions 
for the relation between the slope of the psycho­
metric function for each individual and the col­
lective dyad; thus, by compruing predicted and 
observed dyad slopes, we could distinguish the 
models. For each of the four models (9), we com­
puted the predicted dyad slopes, s:;;:, in terms of 
the individual slopes, SI and 52, of observeT'.i 
I and 2. For the CF model, the predicted dyad 
slope is related to the individual slopes by 

CI' Sl +,)'2 
Sdytd::: -2-

for the BF model by 

for me WCS model by 

wcs ,)'1 + S2 
stlyad = 2iJ2 

and fo r the DSS model by 

( I) 

(2) 

(3) 

SO" - (s' + J.) 1/ 2 (4) dyad - t 2 

These (X}uations provide upper bounds on per­
fomlance for each model: For example, Eq. 3 
provides the lall:,1CSt possible dyad slope, given that 
participants share only contidence. If the dyads 
reach that slope, then they are Bayes optimal, given 
the model assumptions, where by "Bayes optimal" 
we mean that participants made decisions that 
max imized thcir probability ofbcing comx:t, given 
their model assumptions. 

Fig. IC shows the predictions (from Eqs. I to 
4) for the collective benefit (the ratio Sdy .. JsnlaS) 
versus relalive sensitivity (sIllirlSmIllI)' where Smin 
and Sma" are the minimum (less sensitive) and 
maxi mum (more sensitive) of the individual 
slopes, respectively. The models clearly make dif­
ferent predictions, but to distinguish them requires 
experiments with a broad range of Sn>ijs,na~; we 
would need to investigate dyad members with 
nearly identical pcrfonnance (')·mi./Smroc - I), as 
well as those with very di fferent performance 
(SllIic!Smax « I). Experiments I and 2 were per-

p</).0<11 

CF SF WCS DSS 

formed to test the model predictions in different 
ranges of smi.lSrfW(' 

In experiment I, participants viewed identical 
stimuli, and individual sensitivities of the dyad 
members were similar (smn/sma" > 0.5) (Fig. 2B). 
The CF model (Eq. I and Fig. Ie, black dot­
dashed line) predicted that dyad sensitivity would 
ncver be higher than that of the better participant. 
The BF model (Eq. 2 and Fig. I C, solid black line) 
predicted that dyad sensitivity would be as good as 
tha! of the better participant. In contrast, the WCS 
model (Eq. 3 ru1d Fig. IC, red line) and DSS model 
(Eq. 4 and Fig. IC, green corve) bom predicted 
that, within the relative sensitivity range tested here 
(snm/snm > 0.5), dyad sensitivity would be higher 
than that of tJle bener participant 

We found that the dyad slope was significantly 
larger than that of the bener participant (1( 14) = 
5.24, p < 10-3, paired 1 test]. Thus, these dara 
ruled ootbom Ihe CF (Fig. 2A;p < 10- ') and BF 
(Fig. 2A; P < 10-3

) models, for which the dyad 
slope can be no larger than that of the bener par­
ticipant, and instead favored the sharing models 
(p > 0.1), fo r which the dyad can oufpCrfonn the 
individuals. The sharing modcls wcre also able 
to accuratc ly predict, via Eqs. 3 and 4, the dyad 
slopcs on a case-by-case bas is (fig. S I). Thus, 
communicati on conferred a Sign ificant benefit , 
and, at least on thi s task, two heads did perfonn 
bener than one. 

Experiment I filVOrcd the WCS and DSS mod­
els, but was nOI able 10 distinguish between them. 
For the mnge of relative sensitivities tested in 
experimeru I, the two models made very similar 
predictions (Fig. 2B). To distinguish the mod­
els, we sought to study dyads with very differ­
ent individual sensitiv ities (SmiJSmax « I) for 
which the WCS model (Fig. I C. red line) made 
a counterintuitive prediction: If one participant's 
sensitivity was no better than - 40% of the other's 
(e.g., srrur/SCTla;( < 21fl - 1 .:: 0.4), then two heads 
should do worse than the better one C~lI)..Is,,1lO' < I), 
even when individuals accurately communicated 
their confidence. In contrast, the DSS model (Fig. 
1 C, green curvc) invariably predicted a benefit 
for dyads, consistent with the fact that when sig-

B CF WCS -

'

SF - DSS -,. 

:~ 
I ... • ... • 

o 1:1 -0 Z oc-,;---':o oc. - "o",c---: 

Smut / S IIIlLt; 

Fig. 2. Results of e, periments 1. W Plot of the ratio of the dyad slope to the slope predicted by each 
model. The SF model comparison also depicts collective benefit over the more sensitive observer. Error 
bars indicate SEM (N = 15). (B) Distribution of data points and model predictions. Collective benefit 
(sdyactlsnwx) is plotted against relative sensitivity (smirlsma.)' Each blue square represents one dyad. 
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nals arc directly avai lable (as in multisensory 
integrmion with in a single brain), putting them 
together is never wo~e than either one alone (4). 

We tested these predictions in experiment 2. 
In randomly chosen trials, we surreptitiously re­
duced onc or the other (or both) participants' sen­
sitivity by adding a substantial runount of noise to 
their stimuli (9) without having told the partic­
ipants about this manipulation. The four noise re­
gimes were rnndomi7..cd, so on each trial, noise 
was given to both participants ("equal" condition), 
to one but not the other (both possibilities com­
bined together as the "unequal" condition), or to 
neither participant ("none" condition). For each 
participant and dyad, four psychometric functions 
(corresponding to the four noise regimes) were 
constmcted, and the slopes were estimated (fig. 
S2). Figure 3 shows that, in equal and none 
conditions-in which participants received iden­
tical amounts of noisc-robust group benefits were 
obtained [Fig. 3A; fo r equal condition: 1(10) = 
2.50, p = 0.03, paired 1 test; fo r none condition: 
I( I O) ~ 3.38, p ~ 0.007, pai red I lestJ. Thisrep­
licated rhe resu lts of experiment I. However, in 
the unequal condition, dyads did not perform 
better than the better participant, wld reliable group 
benefi t was not observed [Fig. 3A; 1(2 1) = 0.68, 
p = 0.54, paired t test]. 

In all three conditions, the resul ts were con­
sistent with the predictions of the WCS model 
(Fig. 3B). Importantly, Ihe majority of the dala 
po ints fo r which ,)·miJSm:..x < 0.4 fe ll below the 
black line in Fig. 3D, indicating that, in these 
instances, two heads did worse than the better 
one. The DSS model, on the other hand, was 
rejected in the unequal condition [Fig. 3C; 1(21)= 
4.52, p < 10-3, paired t test]. Moreover, ran­
domizcd addition of noise resu ltcd in a wide 
range of relative sensitivity, and a highly signif­
icant linear correlation was observed between col­
lective benefit and relative sensitivity [Fig. 3D; 
doned bloc line II' ~ 0.5 1, F,,, ~ 43.22, p < 10- 'J 
with a slope (0.6 ± 0.09) and intercept (0.74 ± 
0.05) that were very close to the slope (1/21 12 ~ 
0.7 1) and intercept (1/2112::::: 0.7 1) pred icted by 
the WCS mode l. 

In these cx peri ments, two aspects of social 
infonnation contributed to collective decision­
making: communication and feedback. However, 
the experiments could not tell us whether cithcr 
or both typeS of infonnation were necessary for 
collective benefit in sensitivity. To address th is 
issue, we conducted two more experiments: Exper­
iment 3 tested whether communication was neces­
sary, whereas experiment 4 tested whether feedback 
was necessary. Wc found that communication was 
necessary, but, surprisingly, feedback was not. 

It is conceivable that, even if the participants 
were not able to communicate their confidence 
on each trial, they would still be able to estimate 
each other's avcmge reliability (defined explicitly 
as the slope of the psychometric curves; see Fig. 
I B), not through direct trial-by-trial interaction 
and eonfidcnce shruing, but by accumulating infor­
mation about one anolher's accun'K:y through feed-
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back. Anned with such an estimate, dyads might 
conceivably be able to match the pcrfonnance of 
those that did communicate, and so match the 
pcrfonnancc of the WCS model. On theoretical 
grounds, we did not expect this; instead, we ex· 
peeted performance without communication to 
match the BF model. We hypothesized that trial­
by-trial communication was necessary and that 
fccdbnck alone would not be sufficient for achiev­
ing collective benefit 

Experiment 3 tested this prediction using the 
same paradigm as experiment I, modified so that 
participants were now not allowed to commun i-

cate anything bur their choice. Whenever the par­
ticipants disagreed in their decision, one afthe two 
(chosen randomly by the computer) made a de­
cision individually by arbitmting between their 
own cho ice and that of the other participant. 
Feedback about the correct choice was then given 
to both panicipants (9). The results were un­
equivocal. In contrast to experiment I , dyad sen­
sitivity did not exceed that of the more sensitive 
observer [Fig. 4A, red bar; 1(13) = 0.18, p = 0.85, 
paired r test], as predicted by the BF model. More 
important, dyad sensitivity was significantly lower 
than the UPJXr bound predicted by the WCS model 
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Fig. 3. Results of experiment D 
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1l 

line correspond to benefit and 
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spectively. ns, not significant 
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the slope predicted by the WCS model the latter denoted swcs. This ratio was not significantty different from 
zero for any of the noise conditions. (0 Ratio of the dyad slope to the slope of the OSS model. for the 
unequal noise condition, this ratio was significantly smaller than 1 (p < 10~). (D) Distribution of data points 
and model predictions (the latter taken from fig.lO. Collective benefit U~JsmaJ is plotted against relative 
sensitivity Umr'/Smal)' Each dyad contributed four sets of data points (one triangle for equal one square fo r 
none, and two drcles for unequal conditions). The solid black line indicates the boundary of collective benefit 
(see fig. 10. [n (A) to (Cl, error bars denote SEM (N = 11 data points for equal and none conditions; N = 22 
for unequal condition), 

Fig. 4. Results of exper' 
iments 3 and 4. y-axis coo­
ventions are the same as 
in Fig. 3, A and B. (A) Col­
lective benefit (s"""ISn~) 
is plotted for experiment 
3 (red, without communi· 
catioo) and fO( experiment 
4 (blue. without feedback), 
(8) Ratio of the dyad slope 
to the slope I'"edicted by 
the WCS model for ex­
periment 3 (red, without 

A 
ComparIson 01 dyad to 
the better part icipant 

n, p .. O.02 

B 
Comparison 01 dyad to 

WCS model 

n, 

No Communlc.Uon No Feedback 

communication), and experiment 4 (blue; without feedback). [n all panels, error bars denote SEM (N = 14 for 
experiment 3; N = 11 fo r experiment 4). 

[Fig. 4B, red bar; 1(13) = 5.91, p < 10-'. paired 
I test], demonstrating that knowledge of current 
choice and previous outcomes was not adequme 
for the dyads to reach the level of pcrfonnance 
observed in experiment I, expected from the wes 
model. 

Experiment 3 showed that communication 
was necessary and that feedback alone was not 
~;'Ufficient for dyads to achieve a collaboration 
benefit. However, the results do not address the 
question of whether communication alone, with­
out feedback, is sufficient for achieving collabo­
mtion benefit. Could dyads achieve any group 
benefit at all without ever receiving any objective 
feedback about the accuracy of their decisions? 
This is an important question, because feedback 
is not formally incorpornted in the confidence­
sharing model (9). Taking this model seriously 
at lace value, one may make the extn.'lllely cOWlter­
intuitive assumption that, as long as accumtc com­
munication of confidence is ensured, dyad benefit 
can sti ll be achieved without any feedback (that 
is, without any definitive knowledge of decision 
outcomes). 

In experiment 4, we removed the feedback 
stage of the tusk to test this prediction (9): After 
the joint decision was made (either automatically 
in the agreement trials or after interaction in the 
disagreement trials), the participants were not 
told the correct answer. An other aspects of the 
experiment were identical to experiment I. Con­
sistent with our prediction, even without feed­
back, the dyads nevertheless achieved a significant 
collabomtion benefit [Fig. 4A, blue bar, 1( 10) = 
2.68, p = 0.022, paired I test], and dyad sen­
sitivity was statistically indistinguishable from 
the prediction of the confidence sharing model 
[Fig. 4B. blue bar; r( 10) = 1.16. p = 0.27, paired 
r test]. These fi nd ings indicate that objective 
feedback was not necessary, and communica­
tion alone was sufficient for achieving collective 
benefit 

Our resu lts show that interactive decision­
making bctv.teen two individuals can significant­
ly improve perceptual sensitivity, but, importantly, 
only for similarly sensitive observers. Moreover, 
such joint behavior is Bayes optimal under the 
assumption that participants accurately communi­
cate their internal estimate that they arc correct. 
Our findings show that human-to-hulTUUl inter­
personal communication is adequately rich to 
pennit sharing of subjective estimates of confi­
dence, and humans are adequately perceptive to 
make optimal use of this infomlation. Moreover, 
communication of trial-by-nial confidence is nec­
essary for collective benefit, but, somewhat sur­
prisingly, feedback about decision outcomcs is not. 

Quantitntively. we tested four models, and 
on ly on the WCS model, in which participants 
communicated only an internal estimate of their 
reliability on each trial-was cOl)sistent with the 
data. Of the three models that were not consistent 
with the data, one, the DSS model, posited that 
participants communicated both the perccived 
contrast and their estimate of its reliabi lity on 
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each trial. That moocl was rejected because it out­
perfonned the dyads in experiment 2. This leaves 
open the possibili ty that the participants did com­
municate contrast and reliability, but used that 
infonnation suboptimally, which seems unlikely, 
as we never observed any dyads explicitly com­
municating contrast and reliability separate ly, 
However, our data cannot definitive ly rule out 
this idea, and further research is needed to dis­
tinguish between optimal use of WCS versus 
suboptimal DSS. 

The general consensus from extensive earlier 
work on collectivc decision-making is that groups 
rarely outperform their best members (1 J, 15), 
Even in ono of the rore cases in which consistent 
collaborative benefit was establ ished, group per­
fonnance failed to reach the bound predicted by 
the proposed ideal combination of individual 
decisions (14). That study employed the DSS 
model (see Eq. 4) to estimatc the ideal, expected 
group sensitivity. As shown in experiments I and 
2, however, the predictions of that model deviate 
Significantly from empirical data if individuals' 
sensitivities differ markedly. Ln particu lar, exper­
iment 2 demonstrated the detrimental side effect 
of collective decision-making based on Bayesian 
combination of confidence: individuals with vel')' 
different sensitivities are best advised to avoid 
collaboration and instead should rely entirely on 
the more sensitive individual. [n fact, the WCS 
model and the results of experiment 2 (Fig. 3D) 
set a quantitative limit on the usefulness of coop­
oration that, to our knowledge, is not predicted by 
current economic and social theories of collective 

deci sion-making (/5). An important next step for 
future research is to test the generality of this limit 
in other types of dyadic interactions. 

Our findings have direct bearing on studies in 
social psychology that have discovered numer­
ous situations in which groups fail to do better 
than their individuals. Many explanations for 
such "process loss" have been proposed, such as 
reduced effort in the presence of others [e.g., 
"socinl loafing" (16)], interpersonal competition 
(J I), and groupthink (J 7}. Our results raise the 
rather different possibility that, when the com­
municated evidence (perceived contrast) cannot 
be separated from its reliability (slope), such fail­
ures of co ll ective decision-making may be the 
natural consequence of a perfectly reasonab le 
strategy (for instance, WCS). Indeed, we know 
all too wel l about the catastrophic consequences 
of consulting "evidence" of unknown reliability 
on problems as diversc as the existence of weapons 
of mass destruction and the possibility of risk­
free investments. 
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protonation state of its phosphate headgroup, In yeast, a rapid decrease in intracellular pH in response 
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phospholipid metabolic genes. This enabled coupling of membrane biogenesis to nutrient availability. 
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Opi I to the nucleus (3). Nuclear Opi I represses 
the In02l4 transcriptional activator complex, which 
binds a cis regulatory elemcnt, UAS rNo. found in 
many phospholipid metabolic gencs (4). 

Of the genes regulated by inositol and Opi I , 
INOI is the most highly regulated (4). INOI 
encodes the rote-limiting enzyme in inositol bio­
synthesis; thus, inositol auxotrophy is a sensitive 
measure of expression of the IN01 gene and the 
status of the ER lipid sensor. We screened the 
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