

Genetic and environmental contributions to callous-unemotional traits and conduct problems

Essi Viding, PhD
Professor of Developmental Psychopathology
Developmental Risk and Resilience Unit, UCL
e.viding@ucl.ac.uk

Background

- A growing evidence base indicates that children with high vs. low CU traits:
 - Differ in the severity and variety of antisocial behaviour they display
 - Have different neurocognitive profiles
- What can genetically informative studies tell us about the origin of CU and CP?

Overview Twin Method Twin Studies of AB and CU traits Molecular Genetic Research Environment Implications

Overview

- Twin Method
- Twin Studies of AB and CU traits
- Molecular Genetic Research
- Environment
- Implications

Overview

- Twin Method
- Twin Studies of AB and CU traits
- Molecular Genetic Research
- Environment
- Implications

Twin and adoption studies of antisocial behaviour • Antisocial behavior (AB) - Moderate heritability - Some shared environmental influence - Moderate non-shared environmental influence Rhee & Waldman, 2002

Aetiology of callous-unemotional traits in children and young people

(reviewed in Viding & McCrory, 2012, Development & Psychopathology)

- 15 published twin studies at the time of review
- From U.S., U.K., and Sweden
- Sample sizes moderate (398 pairs) to large (3687 pairs)
- A wide age range across studies (7-24 years)
- A variety of measures

Viding & McCrory (2012)

- · CU traits have moderate to strong heritability
- Shared environmental influences do not play a role in driving individual differences in CU traits in adolescents
 - Environmental influences making members of the twin pair similar to each other do not, as a rule, account for individual differences in psychopathic personality in children/adolescent
- Findings in line with adult data on psychopathic and other personality traits
 - Non-shared environmental influences important

Sex differences?

- Qualitative sex differences?
 - Different genes and environments influencing phenotypic variance in males and females
 - Can be tested with twin studies that include opposite sex DZ twins
- Larsson et al., 2006; Viding et al., 2007; Fontaine et al., 2011
 - No support for qualitative sex differences

Sex differences?

- Quantitative sex differences?
 - Do the same genetic and environmental influences affect males and females to a different degree?
 - Can be studied by comparing a model where A, C, E can be different to a model where A, C, E are fixed to be the same between sexes.

Elevated CU associated with: - increased levels of behavioral difficulties and family risk factors at 4 years old - higher levels of conduct problems and hyperactivity at 12 years old These associations were strongest for the stable high group Four trajectories of CU identified through general growth mixture modeling: stable high, increasing, decreasing, and stable low.

Origins of stability of CU traits across development

- Blonigen et al. (2006); Forsman et al. (2008)
 - Heritability estimates remain similar across timepoints
 - CU: phenotypic stability mostly due to genetic influences; change environmentally influenced

CU traits are heritable; possibly more heritable for boys than for girls Stability of CU traits in childhood/adolescence largely driven by genetic influences Change environmental? CP more heritable in children with CU traits than in their non-CU counterparts

Overview

- Twin Method
- Twin Studies of CU traits
- Molecular Genetic Research
- Environment
- Implications

Molecular genetics

- Twin and adoption studies do not tell us about actual genes
 - However important in establishing, e.g.:
 - whether a trait/disorder is heritable
 - whether the genetic effects are stable throughout development
 - whether there is heterogeneity in aetiology between different subtypes
 - help focus molecular genetic investigations
- Molecular genetic studies of behaviour and psychiatric illness attempt to understand the specific genetic influences on a trait/disorder

Genes The genome comprises the entire set of chromosomes for the organism Every chromosome is made up of DNA, each strand of which contains many genes

- A gene is a unit of DNA that codes for a protein.
- The genome has start and stop signals to define a gene.
- The genome has also got regions that regulate whether gene is expressed or not (or how much it is expressed) – the expression can be responsive to environmental conditions (epigenetics)

'Allelic variation' in mini coopers

Better for sunny days - Miserable on rainy days.

Better for rainy days - Too hot on sunny days.

Two alternative forms of the same gene are good for different purposes.

May increase likelihood of one behaviour/disorder, but decrease likelihood of another.

- There are several types of DNA variation,
 e.g.:
 - variable number of tandem repeats of a particular stretch of DNA
 - ATTCGATTCGC
 - ATTCGATTCGC
 - single nucleotide polymorphisms
 - GTGTTGT
 - GTTTTGT

SNP GATATGCA....... A allele A part of two chromosomes - 90% of DNA sequence variability is single-nucleotide polymorphisms (SNPs): single base pair positions in genomic DNA at which different sequence alternatives (alleles) exist. C ...CCGTGTGATTAT ATGCCTACTATA ... T - Abundant (millions in the human genome)

The puzzle of complex psychiatric genetics

- Polygenic, heterogeneous disorders
- Generally weak risk effects
- Gene-gene and geneenvironment interactions?

Goldman et al Nat Rev Gen 2005

Keep in mind!

Molecular genetic studies of psychiatric disorders and traits have produced very few 'big hits'

- Genetic effects small and probabilistic, most studies lack sufficient power to detect such effects
- Genetic effects may be conditional on environmental risk exposure or the presence of other risk genes

What genes for antisocial behaviour?

- Most molecular genetic research into antisocial behaviour has not differentiated between CU subtypes
 - Several serotonin and dopamine system genes implicated (+ some other 'hits')
 variable success in replication
- 'MAOA-antisocial behaviour' association, especially when GxE accounted for
 - But does this relate to threat reactive, low CU aggression?

Caspi et al., 2002 Byrd et al., 2013

What genes for CU?

• Those conferring low emotional reactivity/ arousal? (Viding & Jones, 2008; Glenn, 2010)

What genes for CU?

• Neurodevelopmental genes?

BRAIN

Size matters: Increased grey matter in boys with conduct problems and callous-unemotional traits

Stéphane A. De Brito, ¹ Andrea Mechelli, ² Marko Wilke, ³ Kristin R. Laurens, ¹ Alice P. Jones, ⁴ Gareth J. Barker, ⁵ Sheilagh Hodgins ¹ and Essi Viding^{4,6}

Small, but not perfectly formed: decreased white matter concentration in boys with psychopathic tendencies

Molecular Psychiatry (2011) 16, 476-477; doi:10.1038/mp.2010.74; published online 15 June 2010

SA De Brito^{1,2}, EJ McCrory^{1,2}, A Mechelli³, M Wilke⁴, AP Jones^{2,5}, S Hodgins⁶ and E Viding^{1,7}

ORIGINAL ARTICLE

Heritable Variations in Gray Matter Concentration as a Potential Endophenotype for Psychopathic Traits

Fruhling V. Rijsdijsk, PhD; Essi Viding, PhD; Stéphane De Brito, PhD; Matteo Forgiarini, BSc; Andrea Mechelli, PhD; Alice P. Jones, PhD; Eamon McCrory, DClinPsych, PhD

REPRINTED) ARCH GEN PSYCHIATRY/VOL 67 (NO. 4), APR 2010 WWW.ARCHGENPSYCHIATRY.COM 406

In search of genes associated with risk for psychopathic tendencies in children:
a two-stage genome-wide association study of pooled DNA

Essi Viding, 1-2, Ken B. Hanscombe, 2 Charles J.C. Curtis, 2 Oliver S.P. Davis, 2 Emma L. Meaburn, 2 and Robert Plomin 2

1 Division of Psychology and Language Sciences, University College London, UK, 2 Institute of Psychiatry, King's College London, UK, 2 Institute of Psychiatry, King's College London, UK

- Some tentative hits near neurodevelopmental genes for CP/HCU (Viding et al., 2010)
 - Not replicated in our own genome-wide association study of CU traits (Viding et al., 2013)
 - One of the 'tentative hits', a SNP near ROBO2, replicated by an Australian group – but associated with CP (rather than CU; Dadds et al., 2013)

What genes for CU?

- Those promoting affiliation/attachment?
- Oxytocin is thought to have a role in promoting empathic and affiliative behaviors, which children with CU lack.
- Beitman et al. (2012) found an association between OXTR rs237885 single nucleotide polymorphism (SNP) of the oxytocin receptor gene and CU in a sample of aggressive children
- Malik et al. (2012 the same research group), on an overlapping sample, failed to find any association between CU and a different set of oxytocin receptor SNPs.

Summary

- Molecular genetic work in its infancy
 - Different risk genes for HCU and LCU?
 - Rare variants?
- Genes act in a probabilistic manner and in concert with environmental factors
- No genes FOR CP or CU!
 - Genetic factors may 'bias' information processing, which can predispose individuals to be at risk for developing antisocial behaviour and psychopathic personality

Overview Twin Method Twin Studies of CP and CU traits Molecular Genetic Research Environment Implications

All this behavioural genetic talk seems to ignore the environment... • High heritability and atypical neural activity do not equal immutability • Both twin and molecular genetic studies demonstrate that environment matters • Longitudinal data suggest that CU traits can both increase or decrease across development • We also know that brain development is not fixed

- Waller, Gardner, & Hyde (2013) Parenting focused interventions can be effective for children with high levels of CU
- 'Warm' parenting associated with reduced CP in children with CU

Psychiatry Research 199 (2012) 201-207

Contents lists available at SciVerse ScienceDirect
Psychiatry Research

journal homepage: www.elsevier.com/locate/psychres

Outcomes, moderators, and mediators of empathic-emotion recognition training for complex conduct problems in childhood

Mark Richard Dadds ^{a,*}, Avril Jessica Cauchi ^a, Subodha Wimalaweera ^a, David John Hawes ^b,

 Reduced behavioural problems, increased parent reported empathy following treatment – most pronounced for children with high CU

LCU - Environments

Heightened neural reactivity to threat in child victims of family violence

Eamon J. McCrory^{1,2,*}, Stéphane A. De Brito^{1,2,*}, Catherine L. Sebastian¹, Andrea Mechelli³, Geoffrey Bird^{4,5}, Phillip A. Kelly^{1,2}, and Essi Viding¹

- Environmental main effects and gene-environment interplay
- Dose response relationship between harsh/ inconsistent parenting and conduct problems
- Parenting interventions work well

Caspi et al., 2002

Wootton et al., 1997; Viding et al., 2009; Waller et al., 2013

Overview Twin Method Twin Studies of CP and CU traits Molecular Genetic Research Environment Implications

SUMMARY

- Conduct Problems:
 - Similar outward behaviour by different mechanisms (equifinality)
- CU traits designate a subgroup of children who:
 - are genetically vulnerable to CP
 - have low amygdala response to other people's distress
 - lack ability to resonate with other people's emotions

Implications?

- Pro-sociality, but by slightly different means depending on the child's level of CU traits?
- High CU:
 - Support for positive parenting.
 - Emphasise what is in it for the child? How may his/her good behaviour quarantee access to rewards and privileges?
 - Attention to other people's emotions? Anchoring to own emotional experience?
- Low CU:
 - Existing CP interventions work well:
 - Sanctions and rewards
 - Empathy induction

Future research targets to broaden evidence base

- More gene-environment interplay studies
- Neuroimaging studies using a wider array of tasks
- Behavioural studies investigating different types of rewards
- More treatment studies
 - Different settings: clinic, school, community
- Longitudinal studies combining multiple levels of analyses

≜UCL

Acknowledgements

TEDS, Schools, families and children

Developmental Risk & Resilience Unit

Eamon McCrory, Caroline Bradley, Marine Buon, Charlotte Cecil, Laura Finlayson, Lucy Foulkes, Philip Kelly, Patricia Lockwood, Amy Palmer, Elena Rusconi, Sophie Samuel, Ana Seara-Cardoso, Chloe Thompson-Booth

Former lab members

Catherine Sebastian, Stephane de Brito, Alice Jones, Nathalie Fontaine, Henrik Larsson, Sara Hodsoll, Zoe Hyde

Collaborators

Robert Plomin , Francesca Happe, Mark Dadds, Fruhling Rijsdijk, Andrea Mechelli, Jon Roiser, Craig Neumann, Geoff Bird, Ted Barker, Sarah-Jayne Blakemore

The Developmental Risk and Resilience Unit 2013

Funding

ESRC MRC British Academy Royal Society

